Dispersion of Mass and the Complexity of Randomized Algorithms
نویسندگان
چکیده
How much can randomness help computation? Motivated by this general question and by volume computation, one of the few instances where randomness provably helps, we analyze a notion of dispersion and connect it to asymptotic convex geometry. We obtain a nearly quadratic lower bound on the complexity of randomized volume algorithms for convex bodies in R (the current best algorithm has complexity roughly n and is conjectured to be n). Our main tools, dispersion of random determinants and dispersion of the length of a random point from a convex body, are of independent interest and applicable more generally; in particular, the latter is closely related to the variance hypothesis from convex geometry. This geometric dispersion also leads to lower bounds for matrix problems and property testing.
منابع مشابه
Satellite Conceptual Design Multi-Objective Optimization Using Co Framework
This paper focuses upon the development of an efficient method for conceptual design optimization of a satellite. There are many option for a satellite subsystems that could be choice, as acceptable solution to implement of a space system mission. Every option should be assessment based on the different criteria such as cost, mass, reliability and technology contraint (complexity). In this rese...
متن کاملRandomized Algorithm For 3-Set Splitting Problem and it's Markovian Model
In this paper we restrict every set splitting problem to the special case in which every set has just three elements. This restricted version is also NP-complete. Then, we introduce a general conversion from any set splitting problem to 3-set splitting. Then we introduce a randomize algorithm, and we use Markov chain model for run time complexity analysis of this algorithm. In the last section ...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملThe effect of variation of stellar dispersion velocities by the galactic latitude in interpreting gravitational microlensing observations
Our galaxy is a spiral galaxy and its stars are mostly in a thin disk and rotate around the galactic center. The vertical component of the dispersion velocity of stars is a function of the galactic latitude and decreases with increasing it. In the galactic Besancon model, this dependence is ignored and they just consider the dependence of dispersion velocity on the stellar age. Becanson model i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006